Answer all questions in the booklets provided. A periodic table is provided. You have 50 minutes.

[14] **Question 1**

a) Determine the term symbols for states with the angular momentum and spin quantum numbers (L, S):

- i) (3, 3/2) ii) (4, 2)

b) Identify the most likely ground term from each set of terms:

- i) ²D, ⁴F, ²P, ⁴G ii) ⁴S, ³P, ²D, ¹F

c) Determine the ground state terms for:

- i) V^{3+} ii) Co^{2+} iii) Sb

[10] **Question 2**

- a) Draw and label (with the appropriate d orbital) the d-orbital splitting diagram for a Tshaped complex. (Remember that your z axis should correspond to your principal rotation axis!). (5 marks)
- b) If $[Cu(dppp)(CN)]^+$ assumed this T-shaped geometry what would the theoretical value of (dppp = 1,4-bis(diphenylphosphino)propane, Ph₂PCH₂CH₂CH₂CH₂PPh₂) $\mu_{\rm eff}$ be? marks)
- c) Give 2 reasons why this geometry would be highly unlikely for a transition metal complex. (2 marks)

[12] **Question 3**

- a) Explain why the "chelate effect" is essentially entropy driven. (4 marks)
- b) Explain the trends in the logβ values *across* the table below. These involve the reaction of NH₃, en (ethylenediammine, H₂NCH₂CH₂NH₂) and bn (butylenediammine, H₂NCH₂CH₂CH₂CH₂CH₂NH₂) with the aqueous ions Ni²⁺, Cu²⁺ and Zn²⁺. (4 marks)

	NH ₃ (log β ₆)	en (log β ₃)	bn (log β ₃)
Ni ²⁺ (aq)	8.6	18.3	10.8
Cu ²⁺ (aq)	8.7	18.7	11.5
Z n ²⁺ (aq)	8.1	16.9	9.9

c) Again, using the table above, explain the trends of $\log \beta$ down the table. Give a plausible explanation as to why the values for Cu^{2+} are *higher* than for Ni^{2+} despite the fact that Cu^{2+} has a d^9 configuration and is known to undergo the Jahn-Teller effect? (4 marks)

[14] **Question 4**

- a) List <u>all</u> the d-electron configurations for *high-spin tetrahedral* complexes in which the Jahn-Teller effect is *theoretically* possible. (3 marks)
- b) Determine x in the formula $[Mn(CN)_6]^{x-}$; $\mu_{eff} = 3.87$ B.M. (3 marks).
- c) $[Et_4N][NiBr_4]$ is paramagnetic, but $K_2[PdBr_4]$ is diamagnetic. Explain these observations. (4 marks)
- d) A compound with the *empirical* formula Fe(H₂O)₄(CN)₂ has a magnetic moment corresponding to 2 2/3 unpaired electrons per iron. How is this possible? What is the actual *molecular* formula of this compound? (4 marks)